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ABSTRACT 

The Hunger Game Search (HGS) algorithm is very effective when it comes to finding the best 

answer. This research article proposes a Lévy Flight and Cauchy Flight enhancement to the 

hunger game search (HGS) method, which makes the HGS quicker and more resilient while 

avoiding premature convergence. It also helps to promote population variety, which protects 

against early convergence and improves the capacity to leap out of local optima. This technique 

aids in achieving a better balance between HGS exploration and exploitation. Rapid convergence 

and high accuracy characterize the proposed method, and it can effectively eliminate a local 

optimum. The Usability of HGS was further confirmed by comparing it with a variety of 

conventional and exceptional algorithms with 28 known optimization functions, as well as the 

IEEE CEC 2014 benchmark test suite. The usability of this method is further exemplified by its 

application to a variety of technical problems. In addition, it showed the proposed algorithm with 

higher identification costs of the simulation research results opposite other algorithms. All 

findings support the effectiveness of the targeted optimizer and exemplify the superiority of the 

HSA algorithm. 

 

1. INTRODUCTION 

The goal of designing algorithms is to solve technical issues more efficiently. As the world 

becomes more industrialized, engineering issues get more complicated to solve: rising 

dimensions, variables, time complexity, and space complexity. As a result, efficient solutions for 

solving comparable issues are necessary. Despite its superior performance when compared to 

other common approaches, the salp swarm algorithm has drawbacks, such as low accuracy, 

delayed convergence, and being locked in a local optimum as a result of population variety. 
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The use of Lévy flight and Cauchy flight is useful to better balance the exploration and 

exploitation of algorithms, and it is valuable to avoid local optimizations. The HGS algorithm is 

examined with 28 benchmark functions and the IEEE CEC 2014 benchmark test suite. 

The remainder of this paper is composed as follows: Section 2 outlines the original HGS, Levy 

Flight, and Cauchy flight information. Section 3 demonstrates the concerned experiments' results 

and qualitative analysis of the aforementioned performance of HGS and compares it with 

conventional and advanced algorithms on 28 benchmark functions, the IEEE CEC 2014 

benchmark test suite, and its application to engineering problems. 

2. LITERATURE SURVEY 

The use of meta-heuristics is widespread for optimization in both scientific and industrial 

problems. Many meta-heuristic algorithms are used for solving different optimization problems 

efficiently. From these meta-heuristic algorithms, nature-inspired optimization algorithms are 

widely used to find better solutions and their best results, few such algorithms are Salp Swarm 

Algorithm (SSA), Grey Wolf Optimizer, Cuckoo Search algorithm, etc. Various works have 

investigated the use of Lévy flight in Swarm Intelligence algorithms. We have studied some of 

these papers and made use of our research in implementing our approach.  

Yang and Deb proposed the Cuckoo Search algorithm (CS), based on Lévy flight, in 2009[]. The 

search rationale is based on the behavior of a cuckoo species, according to their research. This 

method creates n random solutions, referred to as "nests." Then, using the Lévy distribution, a 

new solution representing a cuckoo egg is created and compared to the solution of a random nest: 

if the new solution is better than the old one, the previous solution is replaced. Finally, fresh 

random solutions replace a proportion of the worst solutions, and a new solution is created using 

the Lévy distribution, repeating the process until a stopping condition is reached. Yang 

introduces the algorithm of Lévy Flying Firefly (LFA) 2010 [22], which is modeled by the 

conduct of fireflies, which attract companions on the flashing lights. In this method, each 

alternative response is represented by a firefly with a light intensity proportional to its ability. 

The brightness of a solution is directly proportional to its attractiveness, while its distance from 

another solution is inversely proportional. According to a selected value of the Lévy distribution, 

less bright accidents migrate to a brighter luminous vacancy in proportional steps to its 

functionality.  Yang proposed the flowers pollination algorithm (FPA) in 2012 [4], which takes 

care of each solution as a pollen particle that moves in the search space according to two separate 

position update rules: local pollination and global pollination. In each phase, one of the two rules 

is chosen: if local pollination is chosen, the particle moves in a limited neighborhood, and etc. is 

multiplied by a random number of uniform distribution (0, 1); If the global pollination is chosen, 

the particle moves towards the best and a random number drawn from the Lévy distribution is 

multiplied by step-size. The Lévy flight PSO was introduced in 2015 by Hariya [6], which in the 

same way as the standard PSO with the exception is that the inertial coefficient is determined by 
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the Lévy Distribution. Each particle has a position and speed at each iteration, and the speed is 

updated on the basis of the sum of (1) of the current speed multiplied by any number of Lévy 

distribution (2) of the vector for personal multiplied A random number scanned from a uniform 

distribution, and (3) a random integer taken from a uniform distribution multiplied by the vector 

pointing to the global best. In 2016, Sharma et al. proposed the Artificial Bee Colony of Lévy 

(LFABC), which also uses a Lévy theft to calculate the size of the step for mobile solutions. In 

this case, however, each solution is a source of food that is handled by three bees groups: (1) 

Work bees, which modify food sources based on a personal experience and the ability of the new 

source of food; (2) specific bees, which receive information from the bees of work and seek 

better solutions based on this information; and (3) scout bees, which replace sources of food 

abandoned by Rivas.  

 

In 2016, Kalantzis et al. proposed a GPU-based variation of LFA for tackling a restricted 

optimization issue relating to intensity-modulated radiation therapy treatment planning.  In 2016, 

Majumder and Laha proposed a solution for addressing a 2-machine robotic cell scheduling issue 

using a discrete version of CS with Lévy flight.  In 2017[27], Nguyen and Vo presented a 

multiobjective version of CS with Lévy flight. In 2018, Tighzert et al. proposed a ‘‘compact" 

form of LFA, which relies on a probabilistic distribution model rather than a swarm of fireflies. 

 

In 2019[14], Pandey et al. offer two intriguing applications of CS with Lévy flight, in which the 

method is utilized to optimize power consumption in smartphone screens. In 2019[13], Wang et 

al. present a system for tackling a specific scheduling problem: the dynamic allocation of berths 

in seaports, in which Lévy flight is coupled with three ad-hoc local search techniques. The step-

sizes created by the method are rounded to integer numbers to address the combinatorial 

character of the issue, which is a unique feature of this study. 

The following research publications were gathered, researched, and evaluated as part of our 

survey to highlight the benefits and drawbacks, robustness, and weaknesses of various nature-

inspired algorithms. The majority of these articles described variants of these swarm intelligence 

algorithms that had been modified with Levy flight, where the proposed versions of the 

algorithms helped improve the performance of the original algorithms to solve various 

optimization problems, such as binary, modifications, hybridizations, chaotic, multi-objective, 

and parameter-less SSA. HGS has certain similarities to other optimization methods (such as 

CSA, BA, and FA), such as simplicity, speed in searching, and ease of hybridization. Based on 

our findings, HGS may increase its exploration pace while retaining its rapid convergence rate 

by using Levy Flight and Cauchy Flight distributions. 
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3. Design and Implementation 

 

 HUNGER SEARCH ALGORITHM, LEVY FLIGHT, AND CAUCHY FLIGHT 

Animals follow sensory knowledge corresponding to several computational principles. These 

rules not only play as the cornerstone for decision-making and choices when interacting with 

their surroundings (as part of the environment) but also uphold the expansion of cognitive 

structures. Hunger is one of the most fascinating homeostatic drivers and causes of animal 

behavior, decisions, and activities. The animal monarchy has a universal behavioral choice and 

activity selection, which is the fundamental law of goal-directed behavior observed in nature. 

Hunger is a potent incentive for activity, learning, and foraging in any animal, according to 

neuroscientists, and it serves as a force toward changing the living state to a more stable one. 

Because social animals naturally cooperate, they may escape predators and investigate food 

sources such as other animals and plants, boosting their chances of survival. This is how 

evolution works: stronger animals can find food more easily and have a better chance of survival 

than weaker animals. This is comparable to a hunger game in nature. 

Hunger is a sign of not eating for an extended period of time, and the stronger the hunger, the 

stronger the need to eat, and the harder the body will have to fight to locate food in a short period 

of time until it runs out and starvation or death happens. As a result, the game emphasizes logical 

judgments and sensible species migration. 

Mathematical model: 

The proposed mathematical model, as well as the suggested HGS technique, are discussed in 

depth in this section. Please bear in mind that our capacity to build a mathematical model based 

on hunger-driven activities and behavioral choices is limited and that it must be as simple as 

possible while yet producing the greatest outcomes. 

Approach food: 

During foraging, social animals usually interact with one another, but it's impossible to rule out 

the chance that a few individuals do not participate. The following game instructions describe the 

fundamental equation of the HGS algorithm for cooperative communication and foraging 

behavior of individuals: 
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Where is in the range of  

(3.1) 

,  represent two random numbers in the range of [0,1]; 

t is the number of iterations presently in progress; random(1) is a random integer with a normal 

distribution. 

 and are the hunger weights, which are predicated on the fact that hunger-driven signals 

exist. 

represents the location of the best individual in this iteration. 

Each individual’s location is represented by ; 

In the parameter setting experiment, the value of l will be addressed, and it is a parameter that is 

designed to improve the algorithm. 

An agent's hungry and random search for food in their present location is shown by (1 

+random(1)); 

To account for the influence of hunger on the range of activity, models the current 

individual's range of activity in the present time and multiplies it by . 

Because an individual will stop searching once it is no longer hungry,  has been introduced as 

a ranging controller to limit the range of activity, with ’s range gradually falling to 0. 

Depending on , increasing or reducing the spectrum of activity Once arriving at the food 

site, the current individual is told by their peers and then seeks food in the current position after 

the food has been acquired.  is offered as a misinterpretation of the current condition of 

reality. The P formula, which is used to regulate variance across all sites, is as follows: 

P = sech(|F(i) – FB|) 

(3.2) 

Where denotes each individual’s fitness value; 

BF denotes the best fitness achieved so far in the current iteration process; 

A hyperbolic function is sech. 

 

The formula for  is as follows: 

 

(3.3) 
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(3.4) 

where random is a random number in the range of [0,1]; and T is the maximum number of 

iterations 

Based on the rule in Eq. 3.1, the process of searching and logic of HGS in the spaces; 

The search directions may be divided into two groups based on the classification of source 

points. 

Search based on : The first game instruction depicts a self-sufficient individual who lacks a 

collaborative attitude, isn’t interested in cooperating, and just wants to hunt for food.  

Search based on : The variables , , and  are all strongly connected to the second 

game instruction. The individual’s location inside the feature space might be evolved by refining 

these three criteria. This technique replicates the collaboration of several creatures searching for 

food. 

Individuals can use the rules or principles in Eq. (3.1) to examine possible sites near the optimal 

solution and locations far away from the perfect solution, ensuring that all areas within the 

boundaries of solution space are searched to some extent (diversification). The same technique 

may be applied in a high-dimensional search space. 

Hunger role: 

In this section, a mathematical model is used to emulate the hunger characteristics of individuals 

in search. 

The formula of in Eq. (3.1) is as follows: 

 

 

(3.5) 

The formula of in Eq. (3.1) is shown as follows: 

 

(3.6) 

where hungry denote each individual’s hunger and L is the total number of individuals; 

SHungry is the summation of all people’s hunger sensations, or sum(hungry); 
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,  , and  are random numbers in the range of [0, 1]. 

The formula for hung(i) is provided below: 

Hung(i)=  

 

(3.7) 

In the present edition, AllFit(i) maintains track of each individual's fitness. In each cycle, the best 

individual's hunger was set to zero. For other persons, a new hunger(HN) is introduced based on 

the prior hunger. 

As a result, we may conclude that the equivalent HN of various people will differ. 

The following is the formula for HN: 

HT =  

(3.8) 

 

 

(3.9) 

where is a random number in the range of [0,1]; 

F(i) is the fitness value of each individual; 

The best fitness attained so far in the current iteration phase is denoted by FB. 

FW is for the lowest fitness identified in the current iteration process (so far); BU and BL stand 

for the upper and lower limits of the feature space, respectively. 

A lower constraint, HL constrains the sense of hunger. We modify the upper and lower limits of 

hunger to enhance the algorithm's performance, with the value of HL being given in the 

parameter setting experiment. 

 and are simulated because hunger can have both positive and negative impacts on the 

spectrum of activities. 

The difference between BU and BU is utilized in Eq. (3.8) to indicate the individual’s highest 

hunger in various situations. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

2409                                                                http://www.webology.org 

 

F(i) -FB indicates the quantity of food required for an individual to no longer be hungry; the 

individual’s hunger will fluctuate with each iteration. 

In the current method, FW-FD gives an individual’s entire foraging capability; 

Hunger ratio is denoted by ; 

  ×2 shows whether environmental variables have a favorable or negative impact on hunger. 

While the suggested HGS algorithm may be able to predict social animal commonness, it still 

has a long way to go. The algorithm can be improved, for example, by mapping it to a real object 

and incorporating the actual organism's unique features. It can also be enhanced by including 

additional mechanisms. To enhance scalability, we simplify the method as much as feasible. 

Algorithm 1 shows the pseudo-code for the proposed Hunger Games Search. The flowchart is 

also shown in Figure 3. 

Algorithm 

 Initialize the parameters L, T, l, D, SHungry  

Initialize the positions of Individuals Yi (i = 1, 2,…. L) 

 While (t T) 

Calculate the fitness of all Individuals  

Update FB, FW, , BI  

Calculate the Hungry by Eq. (3.7)  

Calculate the  by Eq. (3.5)  

Calculate the  by Eq. (3.6)  

For each Individual  

Calculate P by Eq. (3.2)  

Update A by Eq. (3.3) 

Update positions by Eq. (3.1)  

End For  

t=t+1  

End While 

Return FB,  

 

LEVY FLIGHT 

The Lévy Flight trajectory was initially proposed by Lévy and then improved upon by Benoit 

Mandelbrot. Lévy flight is a type of random walk whe-re the steps are chosen at random from a 

Lévy distribution. 
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Many studies have revealed that when many animals and insects fly, they display the typical 

features of Lévy flight. Lévy’s flying behavior is now being used for optimization and optimum 

search, and the first findings show that it has a huge amount of potential. 

In their flight behavior, several flying creatures show Lévy-like characteristics. Lévy flight is a 

form of random walk in which the step size probability density function (PDF) is strongly tailed, 

which means that a particle traveling according to Lévy flight takes an occasional larger step and 

a lot of smaller steps. The particle moves locally at first, taking numerous little steps, then makes 

a big movement, and then moves locally again. 

The Lévy flight PDF can be defined as follows from a mathematical standpoint: 

Distributive Levy, 

,   

(3.10) 

Where the power-law index is denoted by β and V, U is a random number from Gaussian 

distribution N(0, 1) and N(0, 𝜎2) respectively. Here 𝜎is the standard deviation given by: 

 

 ,   

(3.11)  

where gamma function is denoted by 𝛤. 

 

CAUCHY FLIGHT 

The Cauchy distribution (also known as the Lorentz distribution) is a continuous probability 

distribution with Xo and y parameters. The location parameter is a positive real integer, and a 

scaling parameter is a number that describes the form of the distribution. A distribution with a 

large breadth and a high peak has a shape with a lower value in y. The greater y value, on the 

other hand, indicates a form with a large breadth and a lower apex. The distribution's probability 

density function is 

f(y, )-  

(3.12) 

The Cauchy distribution's cumulative distribution function is given as: 

f(y, )- +  

(3.13) 
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The Hunger Game Search algorithm quickly solves the problem of small-dimensional unimodal 

optimization. Nonetheless, solutions got by HGS while handling multi-modal optimization 

problems and high-dimensional are not very beneficial. Therefore, this paper recommends an 

enhanced version of the HGS algorithm with the purpose of improving the exploration, 

exploitation, convergence of the HGS, and local optimal optima avoidance.  

 

Levy flight is important in the diversification of search agents because it ensures that the 

algorithm can efficiently investigate the search area and avoid local minima. Recognizing this 

means that in the HGS algorithm, flying aids in achieving a more favorable exchange between 

exploitation and exploration. Despite the fact that Lévy's mutant step size makes traversing the 

search area easier, a superior exploration operator is still required. Instead of the Lévy mutation 

operator, a Cauchy-based mutation operator is utilized to generate step size in this situation. The 

Cauchy-based mutation operator is used to generate a Cauchy distributed random number. This 

random number is then used to produce a new solution in the global search equation. 

Thus, the flight is employed to improve the original HGS algorithm, which can be formulated 

mathematically: 

y(t)=Levy(y(t)) 

(4.1) 

y(t)=Cauchy(y(t)) 

(4.2) 

After Eq (3.1), Eq(4.1), and Eq(4.2) are added to improve the algorithm. 

Search potency of HGS algorithms is substantially enhanced by flight, and also helps to avoid 

the local minima in the obtained results. Not only the intensification, which accomplishes the 

search for best-performing aim solution, a well determining the best performing aim solution, but 

also the diversification, which provides the assurance that algorithm advances the global ability 

of HGS is improved in our approach. According to the findings, flight outcomes are beneficial 

and noteworthy for unimodal and multimodal benchmark functions, among other things. The 

modified HGS surpasses the original HGS due to its unique characteristics. Various benchmark 

functions are used to verify the performance of the updated method in dealing with optimization 

challenges. The HGS's essential phases are explained in Algorithm 2 below, and the HGS 

flowchart is shown in Fig1. 

ALGORITHM: 

Set the parameters L, T, l, D, and SHungry to their default values. 

While (t=T), initialise the locations of Individuals Yi I = 1, 2,.... L). 

Calculate each individual’s fitness level. 

FB, FW, Yb, and BI should all be updated. 



Webology (ISSN: 1735-188X) 

Volume 19, Number 2, 2022 

 

2412                                                                http://www.webology.org 

 

Use Eq. to calculate the Hungry (3.7) 

Calculate the M1 using Eq. (3.5) and the M2 using Eq (3.6) 

P should be calculated for each individual using Eq (3.2) 

Update A by Eq. (3.3) 

Eq. should be used to update positions (3.1) 

Eq. (3.12) and Eq. (3.13) are used to update location depending on flight technique (3.13) 

End For t=t+1 

End While  

Return FB, Yb 

 

 

Figure.1: Workflow of HGS Algorithm 

We have considered 28 benchmark functions from CEC 2014 to test the algorithm from various 

aspects. We then employed a Wilcoxon pairwise rank test with 5% significance to verify the 

results.  All tests were carried out on a Windows 10 Home computer with an Intel (R) Core(TM) 
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i5-8250U CPU running at 1.60GHz and 1.80GHz with 8.00 GB of RAM. For a fair comparison, 

all algorithms were programmed in the Jupyter notebook. All tests are performed for 51  

The statistical significance of the data was validated using the Wilcoxon rank-sum across each 

algorithm's mean error values. Over 51 runs, the rank-sum ‘p' for two contrasted methods is 

obtained for each function. As a result, the ‘p' number denotes the likelihood of a difference in 

mean values of algorithms that occurs only by chance. At a 5% level of confidence, the 

difference in the errors is judged significant in this study. 

Versus Cauchy HGS 

1. 10D 

Table 1. Algorithms vs Cauchy HGS (10D) 

 
Better 

Wors

e 

No 

significance 

Original 

HGS 

0.0 2.0 23.0 

Levy 

HGS 

0.0 0.0 25.0 

 

2. 100D 

Table 2. Algorithms vs Cauchy HGS (100D) 

 
Better 

Wors

e 

No 

significance 

Original 

HGS 

1.0 14.0 10.0 

Levy 

HGS 

2.0 0.0 23.0 

5.1.2  Versus Levy HGS 

1. 10D 

 

Table 3. Algorithms vs Levy HGS (10D) 

 Better Worse No 
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significance 

Original 

HGS 

0.0 1.0 24.0 

Levy 

HGS 

0.0 0.0 25.0 

 

2. 100D 

Table 4.  Algorithms vs Levy HGS (100D)  

 Bette

r 
Worse 

No 

significance 

Original 

HGS 

0.0 14.0 11.0 

Levy 

HGS 

0.0 2.0 23.0 

5.2 Time complexity analysis 

The computational time required by any algorithm to perform a specific benchmark function is 

referred to as time complexity.  F18 benchmark function is used to test the time complexity. 

200000 iterations are performed to compute the time. 

Time is represented in seconds in Table 5. The results indicate that Levy HGS performs best at 

10D, 20D, and 100D with the least time and gives competitive results to Cauchy HGS in 30D 

and 50D.  This indicated that Levy HGS outperforms HGS in the case of time complexity.

Table 5:  Time complexity of algorithms 

 10D 20D 30D 50D 100D 

Original HGS 160.884305 404.603323 5306.00725

3 

615.148270 3657.13978

9 

Levy HGS 143.919007 393.860978 5352.59442

9 

602.848463 3558.92332

0 
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Cauchy HGS 760.278522 364.762459 5328.17306

5 

690.149724 3571.49029

7 

 

Functions of the CEC 2014 Benchmark: 

To evaluate the performance of the Levy HGS from a variety of perspectives, 28 benchmark 

functions were chosen to make use of different characteristics. Unimodal functions, Simple 

Multimodal Functions, Hybrid Functions, and Composition Functions are the four types of 

functions. Table 6 summarises these functions. with dimensions, search space boundary, and 

minimum function value. Unimodal functions help to obtain convergence and exploitation 

capability of the algorithm by having one global optima. Multimodal functions have many local 

optima by which it shows the performance of algorithms in exploration tasks by avoiding local 

optima.  The test has been performed with 10000*D maxFES. 

Comparison with unimodal functions: 

The unimodal functions from f1-f3 indicate the convergence rate since it has only global optima 

and no local optima. Levy HGS outperforms HGS in all these functions and gives competitive 

results with Cauchy HGS. The mean error of these algorithms proves that levy hgs gives better 

results in 10D and 100D. 

Comparison with multimodal functions: 

The multimodal functions from f4-f16 indicate the explorations capability of the algorithm. The 

convergence of Levy HGS is better than HGS for most of the benchmark functions in 10D and 

100D. This can be verified with the mean error values where Levy HGS has low error in 

comparison with other two algorithms. 

 Comparison with Composite and Hybrid functions: 

In these complex functions with global optima and many local optima Levy HGS outperforms 

HGS and gives competitive results with Cauchy HGS. The mean errors of these functions verify 

these results.

Table 6: The IEEE CEC2014 functionalities are described here. 

ID Function Equations Dim Range  

Uni modal 

Functions 

    

F1 Rotated High Conditioned Eliiptic 

Function 

30 [-100,100] 100 
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F2 Rotated Ben Cigar Function 30 [-100,100] 200 

F3 Rotated Discus Function 30 [-100,100] 300 

Simple 

Multimodal 

Functions 

    

F4 Shifted Rotated Rosenbrock 

Function 

30 [-100,100] 400 

F5 Shifted Rotated Ackleys Function 30 [-100,100] 500 

F6 Shifted Rotated Weieratrass 

Function 

30 [-100,100] 600 

F7 Shifted Rotated Griewanks 

Functions 

30 [-100,100] 700 

F8 Shifted Rastrigins Function 30 [-100,100] 800 

F9 Shifted and Rotated Rastrigins 

Function 

30 [-100,100] 900 

F10 Shifted Schwefels Function 30 [-100,100] 1000 

F11 Shifted and Rotated Schwefels 

Function 

30 [-100,100] 1100 

F12 Shifted and Rotated Katsuural 

Function 

30 [-100,100] 1200 

F13 Shifted and Rotated Happy Cat 

Function 

30 [-100,100] 1300 

F14 Shifted and Rotated HGBat 

Function 

30 [-100,100] 1400 

F15 Shifted and Rotated Expanded 

Griewanksplus 

Rosenbrocks Function 

30 [-100,100] 1500 

F16 ShiftedandRotatedExpandedScaffers

F6Function 

30 [-100,100] 1600 

Hybrid 

Functions 
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F17 Hybrid Function1(N = 3) 30 [-100,100] 1700 

F18 Hybrid Function2(N = 3) 30 [-100,100] 1800 

F19 Hybrid Function3(N = 4) 30 [-100,100] 1900 

F20 Hybrid Function4(N = 4) 30 [-100,100] 2000 

F21 Hybrid Function5(N = 5) 30 [-100,100] 2100 

F22 Hybrid Function6(N = 5) 30 [-100,100] 2200 

Composition 

Functions 

    

F23 Composition Function1(N = 5) 30 [-100,100] 2300 

F24 Composition Function2(N = 3) 30 [-100,100] 2400 

F25 Composition Function3(N = 3) 30 [-100,100] 2500 

F26 Composition Function4(N = 5) 30 [-100,100] 2600 

F27 Composition Function5(N = 5) 30 [-100,100] 2700 

F28 Composition Function6(N = 5) 30 [-100,100] 2800 

 

10D 

  
           Fig 2. RLD of F1 CEC Function(10D)   Fig 3. RLD of F2 CEC Function(10D) 
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           Fig 4. RLD of F3 CEC Function(10D)    Fig 5. RLD of F4 CEC Function(10D) 

 
           Fig 6. RLD of F5 CEC Function(10D)            Fig 7. RLD of F6 CEC Function(10D) 

 

  Fig 8. RLD of F7 CEC Function(10D)    Fig 9. RLD of F8 CEC Function(10D) 

            

Fig 10. RLD of F9 CEC Function(10D)      Fig 11. RLD of F10 CEC Function(10D) 
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Fig 12. RLD of F11 CEC Function(10D)     Fig 13. RLD of F12 CEC Function(10D) 

            

Fig 14. RLD of F13 CEC Function(10D)     Fig 15. RLD of F14 CEC Function(10D) 

            

Fig 16. RLD of F15 CEC Function(10D)     Fig 17. RLD of F16 CEC Function(10D) 

           

 Fig 18. RLD of F17 CEC Function(10D)     Fig 19. RLD of F18 CEC Function(10D) 
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 Fig 20. RLD of F19 CEC Function(10D)     Fig 21. RLD of F20 CEC Function(10D) 

            

Fig 22. RLD of F21 CEC Function(10D)     Fig 23. RLD of F22 CEC Function(10D) 

           

 Fig 24. RLD of F23 CEC Function(10D)   Fig 25. RLD of F24 CEC Function(10D) 

            

Fig 26. RLD of F25 CEC Function(10D)      Fig 27. RLD of F26 CEC Function(10D) 
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Fig 28. RLD of F27 CEC Function(10D)      Fig 29. RLD of F28 CEC Function(10D) 

100D 

           

 Fig 30. RLD of F1 CEC Function(100D)     Fig 31. RLD of F2 CEC Function(100D) 

            
Fig 32. RLD of F3 CEC Function(100D)     Fig 33. RLD of F4 CEC Function(100D) 
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Fig 34. RLD of F5 CEC Function(100D)     Fig 35. RLD of F6 CEC Function(100D) 

            
Fig 36. RLD of F7 CEC Function(100D)     Fig 37. RLD of F2 CEC Function(100D) 

            
Fig  38. RLD of F9 CEC Function(100D)        Fig 39. RLD of F10 CEC Function(100D) 

            
Fig 40. RLD of F11 CEC Function(100D)     Fig 41. RLD of F12 CEC Function(100D) 
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Fig  42. RLD of F13 CEC Function(100D)     Fig 43. RLD of F14 CEC Function(100D) 

           
 Fig 44. RLD of F15 CEC Function(100D)      Fig 45. RLD of F2 CEC Function(100D) 

           
 Fig 46. RLD of F17 CEC Function(100D)     Fig 47. RLD of F18 CEC Function(100D) 

           
 Fig 48. RLD of F19 CEC Function(100D)     Fig 49. RLD of F20 CEC Function(100D) 
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Fig 50. RLD of F21 CEC Function(100D)     Fig 51. RLD of F22 CEC Function(100D) 

            
Fig 52. RLD of F23 CEC Function(100D)   Fig 53. RLD of F24 CEC Function(100D) 

           
 Fig 54. RLD of F1 CEC Function(100D)      Fig 55. RLD of F26 CEC Function(100D) 

 
  Fig 56. RLD of F27 CEC Function(100D)     Fig 57. RLD of F28 CEC Function(100D) 
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4. Results 

 Original HGS Levy HGS Cauchy HGS 

F1 1.39E+08 84912335 89566438 

F2 5.44E+09 4.44E+09 4.46E+09 

F3 43921.1 41537.43 43819.36 

F4 217.8922 189.0115 169.4616 

F5 -79.3574 -79.4112 -79.362 

F6 -88.7658 -89.2552 -89.2193 

F7 -16.4323 -25.902 -17.8765 

F8 -7.56976 -17.4081 -14.3642 

F9 -97.5306 -97.6548 -97.6409 

F10 1881.003 1698.06 1660.421 

F11 1945.561 1883.031 1792.527 

F12 -97.8794 -98.3472 -98.2223 

F13 -96.0329 -96.676 -96.6657 

F14 -80.0994 -83.4721 -83.0845 

F15 1388.257 1158.226 1164.26 

F16 -95.8993 -95.975 -96.0649 

F17 13457854 4336160 4073758 

F18 217497.3 61387.67 116888.9 

F19 599528.4 186036.2 427767.7 

F20 5.42E+08 1.2E+09 3.31E+08 

F21 7382119 4660710 7952305 
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Table 7: Mean error 10D 

 

Table 8: Mean error 100D 

 Original HGS Levy HGS Cauchy HGS 

F1 1.08E+10 8.17E+09 9.36E+09 

F2 2.89E+11 2.57E+11 2.56E+11 

F3 451375 525377.3 379146.3 

F4 120077 92051.18 110497.8 

F5 -78.5889 -78.5973 -78.622 

F6 62.15499 62.98325 63.70115 

F7 2838.006 2546.596 2536.775 

F8 1669.047 1510.795 1685.394 

F9 -15.9785 -25.3797 -18.7644 

F10 32267.52 30283.72 31032.12 

F11 32211.97 31966.3 31383.47 

F12 -95.4788 -95.0187 -95.291 

F13 -89.9591 -90.7529 -90.9874 

F22 1.91E+12 1.25E+13 1.59E+10 

F23 2578.876 2494.916 2497.16 

F24 3563.189 2398.603 2400.5 

F25 2582.727 2516.79 2517.479 

F26 2609.124 2597.28 2600 

F27 510.7582 100.0274 100.0017 

F28 1321.466 100.0003 100.0003 
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F14 648.8629 558.9019 568.5063 

F15 22740287 10518659 12328946 

F16 -52.5822 -52.8608 -53.0781 

F17 1.86E+09 5.75E+08 7.5E+08 

F18 3.87E+10 2.55E+10 2.82E+10 

F19 1.11E+10 6.45E+09 1.26E+10 

F20 8.25E+15 1.46E+15 3.57E+15 

F21 9.04E+09 5.49E+09 5.45E+09 

F22 4.69E+14 1.22E+14 9.19E+13 

F23 2640.763 2504.031 2502.592 

F24 23786.86 100.5 100.5 

F25 10368.55 100 100 

F26 797.4677 100 100 

F27 4631.064 100.0032 100.0032 

F28 7488.847 100.0032 100.0032 

 

Comparison with dataset on clustering task: 

Each algorithm is tested upon 24 datasets among which 13 are balanced datasets and 11 are 

unbalanced datasets. The performance of algorithms is measured based on inter-cluster distance 

and convergence speed. The results show that Levy HGS works well for 15 datasets and Cauchy 

HGS for 9 datasets. These algorithms are also tested with K-Means and it is observed that Levy 

& Cauchy HGS works well for 18 datasets.  
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 Fig 58. Aniso dataset convergence graph   Fig 59. Appendicitis dataset convergence graph 

           

 Fig 60. Balance dataset convergence graph   Fig 61. Banknote dataset convergence graph 

            

Fig 62. Blobs dataset convergence graph   Fig 63. Blood dataset convergence graph 
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 Fig 64. Diagnosis dataset convergence graph   Fig 65. Ecoli dataset convergence graph 

        

 Fig 66. Flame dataset convergence graph   Fig 67. Ionosphere dataset convergence graph 

            

Fig 68. Iris dataset convergence graph    Fig 69. Iris2d dataset convergence graph 
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Fig 70. Jain dataset convergence graph    Fig 71. Liver dataset convergence graph 

            

Fig 72. Moons dataset convergence graph   Fig 73. Mouse dataset convergence graph 

            

Fig 74. Path-Based dataset convergence graph   Fig 75. Smiley dataset convergence graph 
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Fig 76. Varied dataset convergence graph   Fig 77. Vary density dataset convergence graph 

           

 Fig 78. Vertral2 dataset convergence graph   Fig 79. Vertebral3 dataset convergence 

graph 

 

           Fig 80. Wdbc dataset convergence graph   Fig 81. Wine dataset convergence graph 

Table 9: Comparison with K-Means 

 Original  HGS Levy HGS Cauchy HGS K-means 

Blood 3993893.387100 397735.992700 398790.094800 458108.436800 
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Aniso 1640.631083 1389.922204 1385.813822 1403.841180 

appendicitis 45.932999 46.815048 38.793834 37.771954 

Balance 1434.362338 1434.787950 1432.176341 1501.232830 

Banknote 7292.287727 7198.469472 7247.060995 7241.516211 

Blobs 1900.303935 1869.405239 5104.612762 1870.185169 

Diagnosis 113.336836 108.007365 109.287104 109.334315 

Ecoli 93.919720 79.382201 87.771657 66.777036 

Flame 768.353985 763.576414 766.441338 780.542120 

Ionosphere 1028.084022 988.487016 990.498240 794.635445 

Iris 140.047592 99.023303 108.062251 97.195772 

Iris2D 56.889356 54.807600 54.964857 55.319108 

Jain 2561.181964 2557.924602 2558.179117 2608.841432 

Liver 11843.768440 10188.964790 10018.388710 10178.859100 

Moons 900.495516 900.455913 900.527324 904.741304 

Mouse 53.176911 53.172753 53.236675 53.790641 

Pathbased 1417.349333 1414.052552 1449.941309 1423.361597 

Smiley 40270.206100 41543.810330 39829.027770 41782.423650 

Varied 2313.664411 2294.586879 2293.187261 2311.947416 
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Vary-

density 

20.250483 14.316154 14.310175 14.333472 

Vertebral2 12513.946220 12271.268760 9513.769946 9082.498449 

Vertebral3 12281.086910 9494.008187 8821.531528 7845.149030 

Wdbc 154260.304700 53034.779800 150233.383900 152264.678100 

wine 16340.873780 16286.705680 16327.263760 18100.762450 

 

Performance analysis: 

In most datasets, statistically, the Levy HGS delivers greater local avoidance and an optimal or 

near optimum. In the great majority of situations, the performance of the Levy HGS is superior 

to or at least very equal to that of the standard HGS, and the Levy HGS also outperforms the 

other algorithms. The causes for the Levy HGS’s exceptional and efficient performance are 

described next. To begin with, utilizing the Levy flight trajectory improves the algorithm's 

diversity, ensuring its global search capabilities and avoiding local minima. With the addition of 

Levy flight, the positions are not directly updated but it further uses the levy flight equation to 

final position value. Levy flight helps in exploration and also inefficient search. Thus the Levy 

HGS has better local search capability and obtains faster results. 

CONCLUSION AND FUTURE WORKS 

This research paper provides an improved version of HGS. We conclude that HGS with Levy 

flight offers the greatest performance in most situations, and the findings are also similar with K-

Means and IEEE CEC 2014 benchmark test suites, using 28 benchmark functions and 24 

datasets to evaluate the performance of HGS. In addition, we estimate the findings using the 

Wilcoxon pair-wise ranking test with a 5% significance level. The findings provided in section 4 

show that HGS beats all other algorithms in the majority of test cases, demonstrating that HGS is 

a feasible and efficient way to solving global optimization issues. However, this algorithm 

performs better than the original Hunger Game Search algorithm, a meta-heuristic algorithm 

often being stuck in local minima. By introducing flight, we have reduced this possibility. 

Nevertheless, there can be some edge cases where the algorithm still gets blocked in local 

minima. 

Furthermore, the results show a higher approximation capacity of HGS in a high-dimensional 

space. This algorithm applies for clustering tasks to converge to minima faster. The problem in 
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clustering tasks is the Curse of Dimensionality, our algorithm being a meta-heuristics algorithm 

that can perform better and converge faster. The future scope would be to introduce techniques 

like greedy search, mutation and crossover, and ensemble techniques to obtain better results, and 

testing with realistic engineering optimization problems.  
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